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Executive Summary

The introduction of computerized adaptive testing (CAT) has made it necessary to build large pools
of test items with the item statistics (commonly called parameters) needed to describe the characteristics of
the items. The process of obtaining item parameters usually consists of the following two stages:

1. Pretest stage. In a series of sessions, sets of items are administered to groups of test takers, and a
mathematical model called item response theory (IRT) is used to obtainestimates of item parameters
representing such features as item difficulty, discriminating power (the ability of the item to
distinguish between more and less able test takers), or susceptibility to guessing.

2. Online stage. The test is operational and administered online but the responses are also used for
parameter estimation, for example, to keep improving the precision of previous estimates or to
obtain estimates for new items added to the pool.

In this paper it is proposed that methods of quality control be used in the calibration process, for
example, to check if the values of the item parameters have not drifted between the pretest and the online
stage. If parameter drift is found, the response data cannot be pooled to increase the precision of the
parameter estimates. Methods of quality control can also be used to detect security breaches in an online
stage. Three different statistics for quality control are proposed: (1) a Lagrange multiplier (LM) statistic; (2) a
Wald statistic; and (3) a cumulative sum (CUSUM) statistic. The power of the tests based on these statistics,
that is, their ability to detect shifts in the parameter values, was evaluated.

It was found that the tests had moderate to good power to detect shifts in the values of the guessing and
difficulty parameters. In addition, all tests were equally sensitive to shifts in the values of all parameters,
even if the null hypothesis of no shift was formulated for only one of them. This result is not surprising
because estimates of the parameters in the model evaluated are usually highly correlated. The practical
conclusion from the study is that all of these statistics can be used verywell to detect if something has
happened to the item parameters but that it may be difficult to attribute the problems to specific parameters.

Abstract

In computerized adaptive testing, updating item parameter estimates using adaptive testing data is
often called online calibration. This paper investigates how to evaluate whether the adaptive testing data
used for online calibration sufficiently fit the item response model used. Three approaches are investigated,
based on a Lagrange multiplier (LM) statistic, a Wald statistic, and a cumulative sum (CUSUM) statistic. The
power of the tests is evaluated with a number of simulation studies.

Introduction

Computerized assessment, such as CBT (computer based testing) and CAT (computer adaptive testing),
is based on the availability of a large pool of calibrated test items. Usually, the calibration process consists of
two stages.

1. The pretesting stage. In this stage, subsets of items are administered to subsets of respondents in a
series of pretest sessions, and an item response (IRT) model is fitted to the data to obtain item
parameter estimates to support computerized test administration.

2. The online stage. In this stage, data are gathered in a computerized assessment environment. There
may be several motives for using these data for further parameter estimation. The interest may
be to continuously update estimates to attain the greatest possible precision. Or new, previously
uncalibrated items may be entered into the bank and can only be calibrated using incoming responses.

Closely related to the motives for online calibration, but also an aim in itself, is quality control, that is,
checking whether pretest and online results comply with the same IRT model. In the present paper, three
methods of quality control are proposed. The first method is based on the Lagrange multiplier statistic (LM).
The method can be viewed as a generalization to adaptive testing of the modification indices for the 2-PL
model and the nominal response model introduced by Glas (1997, 1998). The second method is based on a
Wald statistic. The third method is based on a so-called cumulative sum (CUSUM) statistic. This last
approach stems from the field of statistical quality control (see, for instance, Wetherill, 1977). Using this
method in the framework of IRT-based adaptive testing was first suggested by Veerkamp (1996) in the
framework of the Rasch model. In this paper, the procedure will be generalized to the 3-PL model.

6
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This paper is organized as follows. The section that follows outlines a framework for estimation of the
2-PL model. This model will subsequently be used for a general introduction of the LM statistic in the next
section. The LM and the Wald and CUSUM statistics will then be applied to quality control in adaptive
testing. Section 6 evaluates the performance of the proposed methods with a number of simulation studies.
Finally, in Section 7 some conclusions and suggestions for further research will be formulated.

Before proceeding, a remark, with respect to the scope of this paper. Strictly speaking, the methods
proposed here also apply to a situation where there is no pretest stage and the item bank is bootstrapped
during the online stage. However, without a pretest stage, in the initial stages of online calibration, the data
on some of the items may be prohibitively scarce or even ill-conditioned, in the sense that there is too little
information in the data to estimate all relevant parameters. Below, it will be assumed that the data are such
that parameter estimates can be obtained. Generalization of the methods to be proposed to ill-conditioned
data, probably by introducing prior distributions on the item parameters, is beyond the scope of the present
paper and will be treated later. Further, it will be assumed that the number of items in the bank is such that
standard errors of estimates can be computed using the complete information matrix. Also application of the
procedures to very large item banks, where other approximations to the standard errors have to be made,
are points of future research.

Preliminaries

Consider dichotomous items where responses of persons labeled n to items labeled i are coded Xni = 0,
and Xni = 1. The, probability of a correct response is given by

4);(0 ) = Pr(X =1I0 ,a,,r31,y1)

+ 04ii(en)
exp(aien

= Y ri)
1 exp(a ;0 (1)

where On is the ability parameter of person n and a I, pi, and y are the discrimination, difficulty, and guessing
parameter of item i, respectively. Since simultaneous ML estimates of all item parameters are hard to obtain
(see, for instance, Swaminathan & Gifford, 1986), in the present paper it will be assumed that y , is fixed to
some plausible constant, say, to the guessing probability. Using priors on y to facilitate its estimation is a
topic for future study. Below, the well-known theory of MML estimation for IRT models will be reiterated. In
this presentation the formalism of Glas (1992, 1997, 1998) will be used, which, as will become apparent in the
sequel, is especially suited for the introduction of the procedures below. The choice of a distribution of
ability is not essential to the theory presented here; it can be the parametric MML framework (see Bock &
Aitkin, 1981) or the nonparametric MML framework (see DeLeeuw & Verhelst, 1986; Follmann, 1988).
However, to make the presentation explicit, it is assumed that the ability distribution is normal with
parameters II and a. Further, for reasons of simplicity, it is assumed that all respondents belong to the same
population. Modern software for the 2- and 3-PL model, such as Bilog-MG (Zimowski, Muraki, Mislevy, &
Bock, 1996), does not have this restriction, but this generalization is straightforward. So, let g(On; u, a) be the
density of 0. Further, let the item administration variable dui take the value one if the item was administered
to n, and zero if this was not the case. If dni = 0 it will be assumed that xni = c, where c is some arbitrary
constant.

Let xn and dn be the response pattern and the item administration vector of respondent n, respectively.
With a reference to the ignorability principle by Rubin (1976), Mislevy (1986) asserts that in adaptive testing
consistent ML estimates of the model parameters can be obtained maximizing the likelihood of responses xn
conditionally on the design dn, that is, the design can be ignored. So, if 4' = p a) is the vector of all
item and population parameters, the log-likelihood to be maximized can be written as

ln 44; X,D) = En lnPr(xId (2)

where X stands for the data matrix and D stands for the design matrix.
To derive the MML estimation equations, it proves convenient to introduce the vector of derivatives

a a
a4

7
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with

Pr(xnld,e,a,p,y)=II, 0,(0)d-r., -c(8 ))a-o-x.o.

Glas (1992, 1997, 1998) adopts an identity due to Louis (1982) to write the first order derivatives of
Equation 2 with respect to 4 as

ah(4)=-1n1.(4;X,D)= En E(b(4)lx,d,4).
a4

(4)

(5)

This identity greatly simplifies the derivation of the likelihood equations. For instance, using the shorthand
notation ni = ii (9n) and Ow = O(Oii), from Equations 3 and 4 it can be easily verified that

d )(1 i)(3 ni (1 ni)
b (a =

iti(1

and

(4), x i)(1-r )M'(1-41ni)

CT, )

The likelihood equations for the item parameters are found upon inserting these expressions into
Equation 5 and equating these expressions to zero. To derive the likelihood equations for the population
parameters, using Equation 3 results in

and

(6)

(7)

b = (0 - (8)

bn(a)=-0.-4 + (0 -1.1)2a-3. (9)

The likelihood equations are again found inserting these expressions in Equation 5 and equating these
expressions to zero.

For computing estimation errors, and the LM, Wald, and CUSUM statistics, also the second order
derivatives of the log-likelihood function are needed. As with the derivation of the estimation equations, also
for the derivation of the matrix of second order derivatives, the theory by Louis (1982) can be used. Using
Glas (1992), it follows that the observed information matrix, which is the opposite of the matrix of second
order derivatives, that is,

a21n144;X,D)
H(4,4)=

evaluated using MML estimates, is given by

H(4,4) =

8

(10)
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where

B(4,4)=
.94 aV

.321nPr(x,13Idn;4)
(12)

Unfortunately, for the 3-PL model, the exact expressions for the second order derivatives become
prohibitively complicated. However, Mislevy (1986) points out that the observed information matrix can be
approximated as

E(b(4)b(4)lx1d,4 ). (13)

Simulation studies by Glas (1997) in the framework of the 2-PL model and the nominal response model
(Bock, 1972) show that this approximation is quite good, in the sense that statistics based on this
approximation attain their theoretical distribution. In the sequel, it will become apparent that this must also
hold for the 3-PL model.

Lagrange Multiplier Tests

Earlier applications of LM tests to the framework of IRT have been described by Glas and Verhelst (1995)
and Glas (1997, 1998). The principle of the LM test (Aitchison & Silvey, 1958), and the equivalent
efficient-score test (Rao, 1948) can be summarized as follows. Consider a null-hypothesis about a model with
parameters 4)0. This model is a special case of a general model with parameters 4). In the present case the

special model is derived from the general model by fixing one or more parameters to known constants. Let
4),9 be partitioned as 44 = (Cu , 4)/02) = (4)01, c ), where c is the vector of the postulated constants and Om is the

vector of free parameters of the special model. Let h(4) ) be the partial derivatives of the log-likelihood of the

general model, so h(4) ) = (a /84))lnL(4)). This vector of partial derivatives gauges the change of the
log-likelihood as a function of local changes in 4). Let H(4),4)) be defined as -(5 2 /540(V)1nL(4)). Then the LM

statistic is given by

Livf = h(40)' fl(4)0,40-1 0).
(14)

If Equation 14 is evaluated using the ML estimate of 4)01and the postulated values of c, it has an asymptotic

x 2 distribution with degrees of freedom equal to the number of parameters fixed (Aitchison & Silyey, 1958).

An important computational aspect of the procedure is that at the point of the ML estimates 4)01 the free

parameters have a partial derivative equal to zero. Therefore, Equation 14 can be computed as

LM(c)= h(c)1141-11i(c) (15)

with

= H22(C,C) 1121 (c/ 01 ) 01 /4)01 /-1 H12 a)01 ,C
(16)

where the partitioning of H(4)0,4)0) into H22 (c, c), H21 (c,('); 01), H11 ($01 , $01 ), and H12(301 , c) is according to the

partition 4)10 = (4)/01, ec,2) = (4)/01, c ).

Notice that H(4)01 ,(1101 ) also plays a role in the Newton-Raphson procedure for solving the estimation

equations and in computation of the observed information matrix. So its inverse will usually by available at

the end of the estimation procedure. Further, if the validity of the model of the null-hypothesis is tested

against various alternative models, the computational task is relieved because the inverse of H(01,30, ) is

already available and the order of W is equal to the number of parameters fixed, which must be small to

keep the interpretation of the outcome tractable.
The interpretation of the outcome of the test is supported by observing that the value of Equation 15

depends on the magnitude of h(c), that is, on the first order derivatives with respect to the parameters 002

evaluated in c. If the absolute values of these derivatives are large, the fixed parameters are bound to change

once they are set free, and the test is significant, that is, the special model is rejected. If the absolute values of
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these derivatives are small, the fixed parameters will probably show little change should they be set free,

that is, the values at which these parameters are fixed in the special model are adequate and the test is not

significant, therefore, the special model is not rejected.

Lagrange Multiplier Statistics for Quality Control

In the introduction section, it was noted that simultaneous ML estimates of all item parameters in the

3-PL model are hard to obtain (see, for instance, Swaminathan & Gifford, 1986). Therefore, in the present

paper it will be assumed that the guessing parameter y, is fixed to some plausible constant, say, to the guessing

probability. In this section, it will be shown how an LM statistic can be used for testing whether this fixed

guessing parameter is appropriate and remains appropriate when confronted with the adaptive testing data.

Consider G groups labeled g = G and yng = 1 if person n belongs to group g, yng = 0 otherwise. In this

paper, the first group partakes in the pretesting stage, and the following groups partake in the online stage.

Given this partition, several hypotheses can be tested. For instance, Glas (1998) suggests evaluating DIF by

testing the hypothesis that item parameters are constant over groups, i.e., testing the hypothesis that a = a,

and 13 ig =8,, for g =1, ..., G. This can, of course, also be applied in an adaptive testing situation

for monitoring parameter drift. However, in the present paper, a test for the hypothesis that .N = y

for g =1, G will be given as an example of applying the LM approach to quality control of adaptive

testing. The LM statistic for testing this hypothesis is based on the first order derivatives with respect to y

For using Equation 3, the first order derivatives of Equation 4 with respect to y is/ bn (y is,), need to be

computed. It is easily verified that

(xni tOni

b(y ig)= y5d,1, (17)

Let I', be a vector of the elements, y ag, g = 1, ..., G. A test for the null-hypothesis y =y, can be based on

LM(ri )= h(1- i)i "1 kri) (18)

with

w H21(1",,4 H11(4,0'4 H n(4,1
(19)

where 4 is the vector of the parameters of the null-model. Therefore, Hn(4, 4) is the matrix of second order

derivatives with respect to these parameters, that is, it is equivalent to the matrix defined by Equation 10. If

h(F) and W are evaluated using MML estimates of the null-model, that is, the estimates of 4, the Livuo

statistic has an asymptotic x2 -distributionwith G degrees of freedom.

A Wald Test and a CUSUM Chart for Quality Control

The CUSUM chart is an instrument of statistical quality control used for detecting small changes in

product features during the production process. The CUSUM chart is used in a sequential statistical test,

where the null-hypothesis of no change is never accepted (Veerkamp, 1996). In the present case, the

alternative hypothesis is that the item is becoming easier and is loosing its discriminating power. Therefore,

the null-hypothesis is arg a a 0 and, p,sii a 0, for groups of respondents labeled g =1, ..., G. As above,

the first group partakes in the pretesting stage, and the following groups are taking an adaptive test.

Before turning to the one-sided hypothesis mg a a 0 and 84 13u a o, first consider the two-sided

null-hypothesis that afg a = 0 and,134 = 0. Let dig be a vector defined by dig = (ctis a 13)/. This

two-sided hypothesis can be evaluated with the Wald statistic

Q ig igt
(20)

where Wig is the covariance matrix of dig. Since the statistic is computed using independent estimates of the

item parameters in two groups, it holds that Wig = Zeg+ EH where Zig and Eil can be approximated using the

relevant elements of the inverse of the opposite of Equation 13, computed with the MML estimates obtained

in group g and group 1, respectively. This statistic defined in Equation 20 has an asymptotic f distribution

1 0
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with two degrees of freedom. However, the interest is in a one-sided test, so also the signs of the elements of
dig are needed. Since Equation 20 is a quadratic form, its signed square root is of interest. Further, it may be
interesting to test the hypothesis iteratively. Therefore, a one-sided cumulative sum chart will be based on

the quantity

Ui1 a ig Pi/ ig

Si(g)= max{Si(g + k
Se(a a Se(13 [341a a aig)

where Se(a aa)= a and Se(j3a 0 isla fl a%) =Vat32 , with a , al, and crud)

the appropriate elements of the covariance matrix Wig, which is also used in Equation 20. Further, ki is a
reference value. The CUSUM chart starts with

and the null-hypothesis is rejected as soon as

Si (0) =0,

(21)

(22)

Si(j) > h,, (23)

where hi is some constant threshold value. The choice of the constants ki and IL determines the power of the

procedure. In the case of the Rasch model, where the null-hypothesis is Pig 13 0, and the term involving
the discrimination indices is lacking from Equation 21, Veerkamp (1996) successfully uses k = 1/2 and hi = 5.

This choice was motivated by the consideration that this set up has good power against the alternative
hypothesis of a normalized shift in item difficulty of approximately one standard deviation. In the present
case one extra normalized decision variable is employed, i.e., the variable involving the discrimination indices.
To have power against a shift of one standard deviation of both normalized decision variables in the direction
of the alternative hypothesis, a value ki = 1 will be tried out below. The value hi = 5 will not be changed.

Examples

In this section, the power of the procedures suggested above will be investigated using a number of

simulation studies. Since all statistics involve an estimateof the standard error of the parameter estimates,
and this standard error is approximated using Equation 13, the precision of this approximation will be

studied first by assessing the power of the statistics under the null-model. Then the power of the tests will be

studied under various model violations.
For all simulations reported below, the ability parameters 0 were drawn from a standard normal

distribution. The item difficulties fl, were uniformly distributed on 1-1.0, 1.01, the discrimination indices a
were drawn from a log-normal distribution with a zero mean and a standard deviation equal to 0.10, and the

guessing parameter, y, was generally fixed at 0.20. In the online phase, item selection was done using the
maximum information principle. The ability parameter 0 was estimated by its expected a-posteriori value
(EAP), the initial prior was standard normal.

The results of eight simulation studies with respect to the power of the statistics under the null-model
are shown in Table 1. The number of items K in the item bank was fixed at 50 for the first four studies and at
100 for the next four studies. Both in the pretest phase and the online phase, test lengths L of 20 and 40 were

chosen, the exact setup is shown in the first two columns of Table 1. Finally, in the third column it can be

seen that the number of respondents per phase was fixed at 500 and 1,000 respondents. So summed over the
pretest and online phase, the sample sizes were 1,000 and 2,000 respondents, respectively. For the pretest
phase, a spiraled test administration design was used. For instance, for the K = 50 studies, for the pretest
phase, five subgroups were used, the first subgroup was administered items 1 to 20, the second, items 11 to
30, the third, items 21 to 40, the fourth, items 31 to 50, and the fifth group received items 1 to 10 and 41 to 50.

In this manner, all items drew the same number of responses in the pretest phase. For the K = 100 studies, the

pretest phase consisted of four subgroups administered 50 items. Here the design was 1-50, 26-75, 51-100

and 1-25 and 76-100. One hundred replications were run for each study.

11



TABLE 1
Power of LM and Wald test under the null-model (100 replications)

Percentage Significant at 10%

K L N, LM Test Wald Test

50

100

20

40

20

40

500

1,000

500

1,000

500

1,000

500

1,000

8

10

9

11

12

8

10

10

9

10

10

8

10

9

12

10

Note. K = size of the item pool; L = test length; Ng = number of persons
in calibration and adaptive testing batches.

The results of the study are shown in the last two columns of Table 1. These columns contain the

percentages of LM and Wald tests that were significant at the 10% level. It can be seen that the power of the

tests conforms to its theoretical value of 10%. Therefore, it can be concluded that the approximations of the

standard errors were quite close.
A second series of simulations focused on the power in the case that the online responses were given

using a value for the guessing parameter yi that was different from the value of the pretest phase. Results are

shown in Table 2. The first panel of the table pertains to a situation where, for the items 5, 10, 15, etc., y

changes from 0.00 in the pretest phase to 0.25 in the online phase. So 20% of the items do not fit the

null-model of the pretest phase. In the fourth and fifth column, the rejection rate of aberrant items using a

10% significance level is shown for the LM and Wald test, respectively. The number of replications was 100.

It can be seen that the power of both tests is quite large. Then, for 20 replications, 9 more batches of size Ns of

respondents were generated and for each new batch, the CUSUM statistic defined by Equation 21 was

computed. In the last six columns the percentage of the detected aberrant items is shown. Non-aberrant

items were detected at chance level, in this case 5%. It can be seen that approximately 100% of the aberrant

items are detected after 4 iterations, which can be considered quite good.

12
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TABLE 2
Detection of aberrant items: changes in y , (per row: 100 replications for LM/Wald and 20 replications for CLISUM)

Significant at 10% CUSUM Detected After Iteration

K L N, LM Test Wald Test 2 3 4 6 8 10

from y, = .00 to y, = .25

50 20 500 95 69 72 77 88 100 100 100

1,000 100 70 85 90 100 100 100 100

40 500 100 100 77 83 99 100 100 100

1,000 100 100 93 98 100 100 100 100

100 20 500 92 93 69 75 92 100 100 100

1,000 98 92 81 95 100 100 100 100

40 500 100 100 73 87 100 100 100 100

1,000 100 100 88 99 100 100 100 100

from y, = .20 to 7, = .30

50 20 500 10 25 2 3 4 12 33 45

1,000 40 60 2 4 4 35 58 66

40 500 31 22 3 3 4 22 44 65

1,000 55 73 4 6 7 45 56 78

100 20 500 18 21 1 2 10 11 45 50

1,000 58 47 4 5 5 13 54 67

40 500 42 44 3 4 7 32 45 75

1,000 49 77 2 6 7 22 50 76

from y, = .20 to y, = .40

50 20 500 50 44 10 15 19 40 66 70

1,000 90 60 12 18 22 50 81 82

40 500 89 97 18 26 33 76 89 100

1,000 100 99 17 24 38 73 100 100

100 20 500 52 44 9 12 18 34 75 86

1,000 88 73 11 22 25 68 79 100

40 500 90 82 19 24 31 57 83 100

1,000 100 100 18 29 30 77 100 100

The positive picture of the power of the LM, Wald, and CUSUM changes dramatically if y, = .20 changes

from 0.20 in the pretest phase to 0.30 in the online phase. From the second panel of Table 2, it can be seen
that in this case the power of the LM and Wald test is quite low, while even after 10 iterations the CUSUM

procedure has only detected about half of the aberrant items. In the last panel of Table 2, y i changes from

0.20 to 0.40, and the power becomes better, although for the L = 20 studies, the power is still quite low.

Note that in the above simulations, only the LM test is strictly aimed at the alternative that y has
changed. However, the estimates of the three parameters of the 3-PL model are highly correlated. This
implies that changes in parameters are often confounded and it is very difficult to identify the actual
parameter that is changing. For instance, if an item becomes known, this can both be translated into an

augmentation of y that is, in an augmentation of a correct response unassociated with 8, in a loss of
discriminating power, and in a lowering of item difficulty. As a consequence, a test that should be sensitive
to changes in y may also have power against changes in a and pi. The latter case was investigated using the

same simulation setup as above. The results are displayed in Table 3, the first panel pertains to a change of

0.50 in the difficulty of the items 5, 10, 15, 20, and so on; the second panel pertains to a change 1.00 in the
difficulty of these items. It can be seen that all tests are indeed sensitive to these changes, especially the
power for the change 1.00 is very high.
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TABLE 3
Detection of aberrant items: changes inj3, (per row: 100 replications for LM/Wald and 20 replications for CLISUM)

Significant at 10% CUSUM Detected After Iteration

K L /s.c, LM Test Wald Test 2 3 4 6 8 10

change -0.50

50 20 500 25 24 12 17 33 65 96 100

1,000 27 28 10 17 28 80 91 100

40 500 24 22 12 26 38 88 99 100

1,000 30 20 15 22 41 83 100 100

100 20 500 23 21 12 18 31 94 95 100

1,000 44 33 5 20 32 78 89 100

40 500 50 42 19 24 54 87 100 100

1,000 53 44 17 23 55 87 100 100

change -1.00

50 20 500 99 89 80 99 100 100 100 100

1,000 90 90 85 90 100 100 100 100

40 500 89 96 87 83 100 100 100 100

1,000 94 96 89 98 100 100 100 100

100 20 500 96 98 87 95 98 100 100 100

1,000 99 92 83 95 100 100 100 100

40 500 89 94 93 97 100 100 100 100

1,000 99 99 98 99 100 100 100 100

Discussion

This paper explored how to evaluate whether the adaptive testing data used for online calibration

sufficiently fit the item response model used. Three approaches were studied, one based on a Lagrange

multiplier (LM) statistic, the others on a Wald and a cumulative sum (CUSUM) statistic, respectively. The

theoretical advantage of the latter procedure is that it is based on a directional hypothesis and can be used

iteratively. The power of the tests was evaluated with a number of simulation studies. It was found that the

power of the procedures ranged from rather moderate for a change from y = 0.20 to y = 0.30, to good for a

change from y = 0.00 to y = 0.25. Further, it was found that the tests areequally sensitive to changes in item

difficulty and the guessing parameter. So the bottom line here is that all these statistics detect that something

has happened to the parameters, but it will be very difficult to attribute misfit to specific parameters.

1 4
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